Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neurol Genet ; 9(5): e200090, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37560121

RESUMO

Objectives: Transcript sequencing of patient-derived samples has been shown to improve the diagnostic yield for solving cases of suspected Mendelian conditions, yet the added benefit of full-length long-read transcript sequencing is largely unexplored. Methods: We applied short-read and full-length transcript sequencing and mitochondrial functional studies to a patient-derived fibroblast cell line from an individual with neuropathy that previously lacked a molecular diagnosis. Results: We identified an intronic homozygous MFN2 c.600-31T>G variant that disrupts the branch point critical for intron 6 splicing. Full-length long-read isoform complementary DNA (cDNA) sequencing after treatment with a nonsense-mediated mRNA decay (NMD) inhibitor revealed that this variant creates 5 distinct altered splicing transcripts. All 5 altered splicing transcripts have disrupted open reading frames and are subject to NMD. Furthermore, a patient-derived fibroblast line demonstrated abnormal lipid droplet formation, consistent with MFN2 dysfunction. Although correctly spliced full-length MFN2 transcripts are still produced, this branch point variant results in deficient MFN2 levels and autosomal recessive Charcot-Marie-Tooth disease, axonal, type 2A (CMT2A). Discussion: This case highlights the utility of full-length isoform sequencing for characterizing the molecular mechanism of undiagnosed rare diseases and expands our understanding of the genetic basis for CMT2A.

2.
Genet Med ; 25(6): 100833, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37013900

RESUMO

PURPOSE: Myocardin-related transcription factor B (MRTFB) is an important transcriptional regulator, which promotes the activity of an estimated 300 genes but is not known to underlie a Mendelian disorder. METHODS: Probands were identified through the efforts of the Undiagnosed Disease Network. Because the MRTFB protein is highly conserved between vertebrate and invertebrate model organisms, we generated a humanized Drosophila model expressing the human MRTFB protein in the same spatial and temporal pattern as the fly gene. Actin binding assays were used to validate the effect of the variants on MRTFB. RESULTS: Here, we report 2 pediatric probands with de novo variants in MRTFB (p.R104G and p.A91P) and mild dysmorphic features, intellectual disability, global developmental delays, speech apraxia, and impulse control issues. Expression of the variants within wing tissues of a fruit fly model resulted in changes in wing morphology. The MRTFBR104G and MRTFBA91P variants also display a decreased level of actin binding within critical RPEL domains, resulting in increased transcriptional activity and changes in the organization of the actin cytoskeleton. CONCLUSION: The MRTFBR104G and MRTFBA91P variants affect the regulation of the protein and underlie a novel neurodevelopmental disorder. Overall, our data suggest that these variants act as a gain of function.


Assuntos
Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Animais , Criança , Humanos , Drosophila/genética , Actinas/genética , Mutação com Ganho de Função , Fatores de Transcrição/genética , Deficiência Intelectual/genética , Transtornos do Neurodesenvolvimento/genética , Fenótipo
3.
bioRxiv ; 2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36798371

RESUMO

Objectives: Transcript sequencing of patient derived samples has been shown to improve the diagnostic yield for solving cases of likely Mendelian disorders, yet the added benefit of full-length long-read transcript sequencing is largely unexplored. Methods: We applied short-read and full-length isoform cDNA sequencing and mitochondrial functional studies to a patient-derived fibroblast cell line from an individual with neuropathy that previously lacked a molecular diagnosis. Results: We identified an intronic homozygous MFN2 c.600-31T>G variant that disrupts a branch point critical for intron 6 spicing. Full-length long-read isoform cDNA sequencing after treatment with a nonsense-mediated mRNA decay (NMD) inhibitor revealed that this variant creates five distinct altered splicing transcripts. All five altered splicing transcripts have disrupted open reading frames and are subject to NMD. Furthermore, a patient-derived fibroblast line demonstrated abnormal lipid droplet formation, consistent with MFN2 dysfunction. Although correctly spliced full-length MFN2 transcripts are still produced, this branch point variant results in deficient MFN2 protein levels and autosomal recessive Charcot-Marie-Tooth disease, axonal, type 2A (CMT2A). Discussion: This case highlights the utility of full-length isoform sequencing for characterizing the molecular mechanism of undiagnosed rare diseases and expands our understanding of the genetic basis for CMT2A.

5.
J Mol Med (Berl) ; 99(11): 1623-1638, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34387706

RESUMO

Among neonatal cardiomyopathies, primary endocardial fibroelastosis (pEFE) remains a mysterious disease of the endomyocardium that is poorly genetically characterized, affecting 1/5000 live births and accounting for 25% of the entire pediatric dilated cardiomyopathy (DCM) with a devastating course and grave prognosis. To investigate the potential genetic contribution to pEFE, we performed integrative genomic analysis, using whole exome sequencing (WES) and RNA-seq in a female infant with confirmed pathological diagnosis of pEFE. Within regions of homozygosity in the proband genome, WES analysis revealed novel parent-transmitted homozygous mutations affecting three genes with known roles in cilia assembly or function. Among them, a novel homozygous variant [c.1943delA] of uncertain significance in ALMS1 was prioritized for functional genomic and mechanistic analysis. Loss of function mutations of ALMS1 have been implicated in Alstrom syndrome (AS) [OMIM 203800], a rare recessive ciliopathy that has been associated with cardiomyopathy. The variant of interest results in a frameshift introducing a premature stop codon. RNA-seq of the proband's dermal fibroblasts confirmed the impact of the novel ALMS1 variant on RNA-seq reads and revealed dysregulated cellular signaling and function, including the induction of epithelial mesenchymal transition (EMT) and activation of TGFß signaling. ALMS1 loss enhanced cellular migration in patient fibroblasts as well as neonatal cardiac fibroblasts, while ALMS1-depleted cardiomyocytes exhibited enhanced proliferation activity. Herein, we present the unique pathological features of pEFE compared to DCM and utilize integrated genomic analysis to elucidate the molecular impact of a novel mutation in ALMS1 gene in an AS case. Our report provides insights into pEFE etiology and suggests, for the first time to our knowledge, ciliopathy as a potential underlying mechanism for this poorly understood and incurable form of neonatal cardiomyopathy. KEY MESSAGE: Primary endocardial fibroelastosis (pEFE) is a rare form of neonatal cardiomyopathy that occurs in 1/5000 live births with significant consequences but unknown etiology. Integrated genomics analysis (whole exome sequencing and RNA sequencing) elucidates novel genetic contribution to pEFE etiology. In this case, the cardiac manifestation in Alstrom syndrome is pEFE. To our knowledge, this report provides the first evidence linking ciliopathy to pEFE etiology. Infants with pEFE should be examined for syndromic features of Alstrom syndrome. Our findings lead to a better understanding of the molecular mechanisms of pEFE, paving the way to potential diagnostic and therapeutic applications.


Assuntos
Síndrome de Alstrom , Cardiomiopatias , Ciliopatias , Fibroelastose Endocárdica , Síndrome de Alstrom/genética , Síndrome de Alstrom/metabolismo , Síndrome de Alstrom/patologia , Cardiomiopatias/genética , Cardiomiopatias/metabolismo , Cardiomiopatias/patologia , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Ciliopatias/genética , Ciliopatias/metabolismo , Ciliopatias/patologia , Fibroelastose Endocárdica/genética , Fibroelastose Endocárdica/metabolismo , Fibroelastose Endocárdica/patologia , Transição Epitelial-Mesenquimal , Feminino , Fibroblastos , Humanos , Lactente , Mutação , Miocárdio/metabolismo , Miocárdio/patologia , Fenótipo , RNA-Seq , Transcriptoma
6.
Nat Neurosci ; 24(6): 799-809, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33958802

RESUMO

The most significant common variant association for schizophrenia (SCZ) reflects increased expression of the complement component 4A (C4A). Yet, it remains unclear how C4A interacts with other SCZ risk genes or whether the complement system more broadly is implicated in SCZ pathogenesis. Here, we integrate several existing, large-scale genetic and transcriptomic datasets to interrogate the functional role of the complement system and C4A in the human brain. Unexpectedly, we find no significant genetic enrichment among known complement system genes for SCZ. Conversely, brain co-expression network analyses using C4A as a seed gene reveal that genes downregulated when C4A expression increases exhibit strong and specific genetic enrichment for SCZ risk. This convergent genomic signal reflects synaptic processes, is sexually dimorphic and most prominent in frontal cortical brain regions, and is accentuated by smoking. Overall, these results indicate that synaptic pathways-rather than the complement system-are the driving force conferring SCZ risk.


Assuntos
Encéfalo/patologia , Redes Reguladoras de Genes/genética , Predisposição Genética para Doença/genética , Esquizofrenia/genética , Esquizofrenia/patologia , Sinapses/patologia , Bases de Dados Genéticas , Feminino , Expressão Gênica , Estudo de Associação Genômica Ampla/métodos , Humanos , Masculino , Estudos Retrospectivos , Transdução de Sinais/genética
7.
Genet Med ; 22(3): 490-499, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31607746

RESUMO

PURPOSE: We investigated the value of transcriptome sequencing (RNAseq) in ascertaining the consequence of DNA variants on RNA transcripts to improve the diagnostic rate from exome or genome sequencing for undiagnosed Mendelian diseases spanning a wide spectrum of clinical indications. METHODS: From 234 subjects referred to the Undiagnosed Diseases Network, University of California-Los Angeles clinical site between July 2014 and August 2018, 113 were enrolled for high likelihood of having rare undiagnosed, suspected genetic conditions despite thorough prior clinical evaluation. Exome or genome sequencing and RNAseq were performed, and RNAseq data was integrated with genome sequencing data for DNA variant interpretation genome-wide. RESULTS: The molecular diagnostic rate by exome or genome sequencing was 31%. Integration of RNAseq with genome sequencing resulted in an additional seven cases with clear diagnosis of a known genetic disease. Thus, the overall molecular diagnostic rate was 38%, and 18% of all genetic diagnoses returned required RNAseq to determine variant causality. CONCLUSION: In this rare disease cohort with a wide spectrum of undiagnosed, suspected genetic conditions, RNAseq analysis increased the molecular diagnostic rate above that possible with genome sequencing analysis alone even without availability of the most appropriate tissue type to assess.


Assuntos
Doenças Genéticas Inatas/diagnóstico , Patologia Molecular , Doenças Raras/diagnóstico , Transcriptoma/genética , Exoma/genética , Doenças Genéticas Inatas/genética , Testes Genéticos/normas , Humanos , Mutação/genética , RNA-Seq/normas , Doenças Raras/genética , Análise de Sequência de DNA/normas , Sequenciamento do Exoma/normas , Sequenciamento Completo do Genoma/normas
8.
Cell ; 178(4): 850-866.e26, 2019 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-31398340

RESUMO

We performed a comprehensive assessment of rare inherited variation in autism spectrum disorder (ASD) by analyzing whole-genome sequences of 2,308 individuals from families with multiple affected children. We implicate 69 genes in ASD risk, including 24 passing genome-wide Bonferroni correction and 16 new ASD risk genes, most supported by rare inherited variants, a substantial extension of previous findings. Biological pathways enriched for genes harboring inherited variants represent cytoskeletal organization and ion transport, which are distinct from pathways implicated in previous studies. Nevertheless, the de novo and inherited genes contribute to a common protein-protein interaction network. We also identified structural variants (SVs) affecting non-coding regions, implicating recurrent deletions in the promoters of DLG2 and NR3C2. Loss of nr3c2 function in zebrafish disrupts sleep and social function, overlapping with human ASD-related phenotypes. These data support the utility of studying multiplex families in ASD and are available through the Hartwell Autism Research and Technology portal.


Assuntos
Transtorno do Espectro Autista/genética , Predisposição Genética para Doença/genética , Linhagem , Mapas de Interação de Proteínas/genética , Animais , Criança , Bases de Dados Genéticas , Modelos Animais de Doenças , Feminino , Deleção de Genes , Guanilato Quinases/genética , Humanos , Padrões de Herança/genética , Aprendizado de Máquina , Masculino , Núcleo Familiar , Regiões Promotoras Genéticas/genética , Receptores de Mineralocorticoides/genética , Fatores de Risco , Proteínas Supressoras de Tumor/genética , Sequenciamento Completo do Genoma , Peixe-Zebra/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...